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The paper is an overview of methods of computational-intelligence (Cl) used in the area of Bioin-
formatics (BI) for the purpose-of advancing the area Computational Biology (CB) and facilitating
discoveries from biological data. Cl is the area of developing generic intelligent information pro-
cessing methods and systems with wider applications; -one of them being Bioinformatics. Cl adopts
many principles from Biology, thus offering suitable methods and tools for Bl. While CB aims at
understanding the biology principles through their computational modeling, Bl is aiming at the use
and the development of new information methods-and systems to enhance the storage, the analysis,
modeling, and discovery from biological data. The synergism between the three disciplines, their
methodologies, problems, and some current solutions are review in the paper. Some new meth-
ods and experimental results are introduced, such as feature and model optimization with genetic
algorithms applied on gene expression data.
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interacts with many other genes, proteins, and is influenced
by many environmental and developmental factors.

Modeling these interactions, learning about them and
extracting knowledge, is a major goal for the scientific
area of Bioinformatics. Bioinformatics (BI) is concerned
with the application and the development of the methods
of information sciences for the storage, the analysis, mod-
eling, and knowledge discovery from biological data.

The area of Computational Biology (CB) aims at under-
standing biology through their computational modeling.
CB is “closer” to biology, while seemingly BI is “closer”
to the computer and information sciences.

Computational Intelligence (CI), which is part of com-
puter and information sciences, is concerned with the
development of generic intelligent information processing
methods and systems with wider applications, one of them

being BI. CI adopts many principles from biology, thus
offering suitable methods and tools for BI and CB.

The synergism between the three disciplines, their
methodologies, problems, and some current solutions are
reviewed in the paper. Section 2 offers a brief review of the
most popular methods of CI. Section 3 gives a background
information in molecular biology and offers a review of
problems in CB and BI along with some solutions using
CI methods. Section 4 discusses the impact of the research
in this area on medicine and nano-technology.

2. METHODS OF COMPUTATIONAL
INTELLIGENCE: A BRIEF OVERVIEW

Cl is the area of developing generic intelligent information
processing methods and systems with wider applications.
CI methods, in its majority, are inspired by the human
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Fig. 1. A diagrammatic representation of the variety of machine learn-
ing techniques (ML) used in the CI methods.

intelligence. They are characterised by learning, gener-
alisation, adaptation, pattern recognition, rule extraction,
knowledge representation, which are characteristics of the
living systems too. There is a large variety of machine
learning (ML) techniques used in the above methods as
shown graphically in Figure 1.

The methods of CI include:

e Probabilistic learning methods, e.g., Hidden Markov
Models;

e Statistical learning methods, e.g., Support Vector
Machines (SVM), Bayesian classifiers;

e Case-based reasoning (e.g., k-NN;
reasoning);

e Decision trees;

e Rule-based systems (propositional logic dated back to
Aristotel) and fuzzy systems (introduced by L. Zadeh');

e Neural networks;
Evolutionary computation;
Particle swarm intelligence;
Artificial Life;
Quantum computation; :
Hybrid systems (e.g., knowledge-based neural net-
works; neuro-fuzzy systems; neuro-fuzzy-genetic systems;
evolving connectionist systems).

transductive

In this section we give a brief description of some of the
above methods.

2.1. Probabilistic and Statistical Methods

These methods are based on probability of event estimation
and their statistical analysis. Bayesian methods are among
the most popular. They are based on the Bayesian probabil-
ity that represents the conditional probability between two
events C and A (Thomas Bayes, 18th century):

p(AlC)p(A)
p(C)
Sometimes, using the Bayesian formula involves difficul-

ties, mainly concerning the evaluation of the prior proba-
bilities p(A), p(C), p(C|A).

p(AIC) =
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A very popular statistical technique for discovering pat-
terns in data is clustering. Based on a measured distance
between instances (objects, points, vectors) from the prob-
lem space, groups of close instances can be defined. These
groups are called clusters. They are defined by their clus-
ter centers and the membership of the data points to them.
A centre c; of a cluster C; is defined as an instance, the
mean of the distances to which from each instance in the
cluster, is less than its distance to another cluster centre.
Let us have a set X of p data items represented in an
n-dimensional space. A clustering procedure results in
defining k disjoint subsets (clusters), such that every data
item (n-dimensional vector) belongs to one only cluster.
A cluster membership function M, is defined for each of

1

the clusters C,, C,, ..., Cy:
M, : X —{0,1}
1, xe(
M;(x) =
0, x¢¢C

where ‘x’is a data instance (vector) from X.

A significant characteristic of clustering is how distance
between vectors is measured. The distance between two
data points in an n-dimensional geometrical space can be
measured in several ways, e.g:

Hamming distance: D, =Y |a;— b,

1
Euclidean distance: E,, = \/— > (a;— b))
n

A special type of clustering is called fuzzy clustering
in which clusters may overlap, so that each of the data
(instances may belong to each of the clusters to a cer-
tain ‘degree.> The procedure aims at finding the cluster
cenfres(V; (i =1,2,...,c¢) and the cluster membership
functions u; which define to what degree each of the
n examples belong to the i-th cluster. The number of
clusters ¢ is either defined a priori (supervised type of
clustering), or chosen by the clustering procedure (unsu-
pervised type of clustering). The result of a clustering pro-
cedure can be represented as a fuzzy relation w; ., such
that:

(i) > p; =1, foreach k=1,2,...,n; (the total mem-
bership of an instance to all clusters equals 1);

(ii) > m;p > 0, for each i =1,2,...,c¢ (there are no
empty clusters).

Probabilistic and statistical methods are used widely in
Bioinformatics tools and systems for biological data anal-
ysis and modeling.

Regression and discrimination analysis, along with Sup-
port Vector Machines (SVM)® are popular techniques to
build a classifier function. The idea of SVM is to transform
original data into higher dimensional feature space via a
kernel computation, and to construct a separating hyper
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Fig. 2. An example of a separation hyperplane between two class exam-
ples in a SVM using a polynomial kernel function.

plane with maximum margin between the class samples
(see Fig. 2 as an example). These kernel functions could
be polynomial, radial basis, linear, etc.

SVM are widely used for gene expression and protein
expression data classification and profiling.

2.1.1. Stochastic Models

Stochastic models deal with the dynamic history of each
object of the model. In other word, for each object the next
state must be calculated using a set of probabilistic rules.
Each rule shows the probability for object to be changed
in particular interval of time, and probability to come to
each state. So, the change of state in this type of model is
probabilistic, not deterministic.

Let us assume that object x in the system has a finite
state space with L states (like in a kinetic logic model):
{X,.X,,...,X,}. For each time step 7, there is a transi-
tion probability P(x,,|xo, ..., x;); and a chain xg, ..., x;
represents the history of the system. Variables ix; form
Markov chain if and only if for any k: i

P(xiqq|xgs o x) = P(xpq[x0)
In other words, a future state depends only on the current
state. All probability values P(X;|X;) that represent the
probability for the system to move from the i-th to the j-th
state, form a transition matrix.

Suppose that a system can move to state X; at time a #,
with a transition rate Al. The probability of the system to
move to the i-th state at the time ¢, is:

The formula for calculating a next time point depends on
the distribution of the moves f,,; —t,, and, for instance,
in the case of an exponential process, the next time point
is the following: 7, ,, = #, —In(r)/A, where r, is a random
value uniformly distributed in (0, 1).

Stochastic models are used for modeling gene regulatory
networks (GRN).
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2.2. Boolean- and Fuzzy Logic Models
2.2.1. Boolean Models

Consider the set of N objects at time 7, {x¥, x5, ..., x&}
and each object can be in only two different states: on/off,
1/0, False/True, etc. For simplicity, let us assume:

xfelo0,1}, i=1,...,N

The state of the system at a time moment can be described
as the states of all objects in this set. The state of a given
object at the next time step f,, can be determined by a
Boolean logic function (returning only two values: 0 or 1)
that takes as an input the current state of the system:

A =B (xf, x5, ..

; )

A Boolean function B = {B,, B,, ..., By} can be repre-
sented as a truth table which consists of all possible sys-
tem states (2V). This function represents relations between
all system’s states and can be represented as a diagram.
Examples of Boolean functions are given below:

Ak+l =Ak|Bk
Bk+l =Ak|—\Bk

where: |, logical OR; and ~, logical NOT.

Boolean methods are used for gene regulatory net-
work modeling to represent the expression of a gene (1
expressed; or 0 not expressed) and the connection between
the genes (l—excitatory, and —l—inhibitory). Boolean
models are very limited in terms of representing the “gray-
ness” in biological systems and the “smoothness” in the
interaction of its elements.

2.2.2. Fuzzy Logic Models

Fuzzy logic is a logic system that is based on fuzzy rela-
tions and fuzzy propositions, the latter being defined on the
basis of fuzzy sets.! A fuzzy set is a set defined by a mem-
bership function to which each domain value can belong
to any degree of membership between 0 and 1 and not
just 1 (belong) and 0 (does not belong) as in ordinary sets.
A variable that can take as values symbolic concepts, such
as small, medium, high, each defined by their fuzzy mem-
bership function, is called fuzzy variable. Fuzzy proposi-
tions are propositions which contain fuzzy variables with
their fuzzy values. The truth value of a fuzzy proposi-
tion “X is A” is given by the membership function u, of
the fuzzy value A. Fuzzy relations link two fuzzy sets in
a predefined manner. Fuzzy relations makes it possible to
represent ambiguous relationships, like: “the expressions of
the genes in cluster 2 and cluster 3 are similar,” or “model
A performed more or less better than model B,” or—*“the
more the gene X is expressed, the higher the risk of cancer.”

Fuzzy logic allows for representation of ‘“gray-

ness,” “smoothness,” inexactness, flexibility, mobility of
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IF (gene A is highly expressed) AND

(gene B is lowly expressed) AND
(gene C is very highly expressed)
THEN The cancer outcome is likely to be good.

Two fuzzy rules of a general type. Each rule has two fuzzy input variables x1 and x2 and one fuzzy output variable.

Rule r;: IF x1 is Small (DI11) and x2 is Small (DI21) THEN Output is Small (CF1),

Rule r;: IF x1 is Large (DI1j) and x2 is Large (DI2j) THEN Output is Large (CFj),
where: x1 and x2 are input variables, and Output is an output variable; Small and Large are fuzzy values defined by
their respective fuzzy membership functions and DI and CF are degree of importance (membership) and certainty factors
respectively. These rules are facilitated in the ANN structure shown in Figure 3 and explained later in the next sub-section.
An exemplar fuzzy rule representing a gene expression profile of a disease:

Box 1.

relations, and concepts, which is important when deal-
ing with biological data and concepts. Examples are:
“high/low gene expression values;” “strong/week binding
between proteins;” “more or less similar structures;” “fast
growing culture,” and many more.

A fuzzy model is represented usually as-a-set of fuzzy
rules and an inference algorithm. An example of a'set of
two general fuzzy rules is given in Box 1, where a fuzzy
rule for gene expression profiling is shown as a concrete
example in the box.

2.3. Artificial Neural Networks

Artificial neural networks (ANN) (connectionist systems)
are computational models that mimic vaguely the ner-
vous system in its main functions of adaptive learning and
generalization.*® They are universal computational mod-
els so that any algorithm or function can be realised as
an ANN model. Moreover, ANN can learn functions from
data without specifying the type of the function. They are
called model-free estimators.

ANNs provide a model of computation that-is differ- '

ent from traditional algorithms. Typically, they'aresnot
explicitly programmed to perform a given task; rather, they
learn to do the task from examples of desired input/output
behavior. The networks automatically generalize their pro-
cessing knowledge into previously unseen situations, and
they perform well for the noisy, incomplete or inaccurate
input data.

In general view, artificial neural network is the model
consisting of interconnected units evolving in time. A con-
nection between units i and j is usually characterized by
a weight denoted as w;;. There are three important archi-
tectures ANN based on the connectivity:

e Recurrent (contains direct loops from output units
(nodes) back to input nodes);

e Feed-forward (contains no direct loops);

e Layered (units organized into layers and connections
are between layers).

The behavior of each unit in time can be described by
a time-dependent function, or a stochastic process, or a

J. Comput. Theor. Nanosci. 2, 473-491, 2005

Bayesian formula, etc. So, i-th unit receives total input x
from the units connected to it and generates a response
based on an activation function. When this function is a
threshold function

1, x>0

)= 0. x<0

the unit'is called a threshold gate and can generate only
binary decisions.

ANN can implement different ML techniques from
Figure 1 and hence—the variety of the ANN architectures.
Many of these architectures are known as “black boxes”
as they do not facilitate revealing internal relationships
between inputs and output variables of the problem in an
explicit form. But for the process of knowledge discovery,
having a “black box” learning machine is not sufficient.
A learning system should also facilitate extracting useful
information from data for the sake of a better understand-

,ing and learning of new knowledge.

The knowledge-based ANN (KBANN) have been devel-
oped for this purpose. They combine the strengths of dif-
ferent Al techniques, e.g., ANN and rule-based systems or
fuzzy logic. Rules can be extracted from the KBANN as
illustrated in Figure 3.°

Evolving connectionist systems (ECOS) have been
recently developed to facilitate both adaptive learning in
an evolving structure and knowledge discovery.!® ECOS
are modular connectionist-based systems that evolve their
structure and functionality in a continuous, self-organised,
on-line, adaptive, interactive way from incoming infor-
mation; they can process both data and knowledge in a
supervised and/or unsupervised way. Learning is based on
clustering in the input space and on function estimation
for this cluster in the output space. Prototype rules can be
extracted to represent the clusters and the functions asso-
ciated with them.

Different types of rules are facilitated by different ECOS
architectures, such as evolving fuzzy neural networks
(EFuNN)—see Figure 3; dynamic neuro-fuzzy inference
systems DENFIS, etc.! An ECOS structure grows and
“shrinks” in a continuous way from input data streams.
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Output y

Fuzzy Outputs

Input x,

Input x,

Fig. 3. An artificial neural network model (in this case it is evolving
fuzzy neural network EFuNN having two inputs, three fuzzy membership
functions and one output).

Feed-forward and feedback connections are both used in
the architectures. The ECOS are not limited in number
and types of inputs, outputs, nodes, connections. MATLAB
codes of EfuNN and DENFIS, as well as some other ECOS
techniques, are available from www.kedri.info/. A simple
learning algorithm of a simplified version of EFuNN called
ECF (Evolving Classifying Function) is given in Box 2.

Kasabov et al.

ECOS have been used for different tasks, including gene
expression modeling and profile discovery (see the next
section), GRN modeling, protein data analysis, brain data
modeling, etc.!”

2.4. Evolutionary Computation (EC)—
Genetic Algorithms (GA)

EC methods are inspired by the Darwinian theory of evo-
lution. These are methods that search in a space of possible
solutions for the best solution of a problem defined through
an objective function.!! EC methods have been used for
parameter estimation or optimization in many engineering
applications. Unlike classical derivative-based (like New-
ton) optimization methods, EC is more robust against noise
and multi-modality in the search space. In addition, EC
does not require the derivative information of the objective
function and is thus applicable to complex, black box prob-
lems. Several techniques have been developed as part of
the EC area: genetic algorithms (GA), evolutionary strate-
gies, evolutionary programming, particle swarm optimiza-
tion, artificial life, etc., the GA being the most popular
technique so far.

A genetic algorithm GA is an optimization technique
aiming at finding the optimal values of parameters
(“genes”) for the “best” “individual” according to a

The learning algorithm for the ECF ANN-:

step 1; otherwise it goes to the next step.

data vector.

way as in step 2, and go to step 1.

corresponding to the smallest average distance.

1. Enter the current input vector from the data set (stream) and calculate the distances between this vector and all rule
nodes already created using Euclidean distance (by default). If there is no node created, create the first one that has the
coordinates of the first input vector attached as input connection weights.

2. If all calculated distances between the new input vector and the existing rule nodes are greater than a max-radius
parameter Rmax, a new rule node is created. The position of the new rule node is the same as the current vector in
the input data space and the radius of its receptive field is set to-the min-radius parameter Rmin; the algorithm goes to

3. If there is a rule node with a distance to the current input vector less then or equal to its radius and its class is the
same as the class of the new vector, nothing will'be“changed, gb' to step 1; otherwise:

4. If there is a rule node with a distance to the input vector less than or equal to its radius and its class is different from
those of the input vector, its influence field should be reduced. The radius of the new field is set to the larger value
from the two numbers: distance minus the min-radius; min-radius. New node is created as in 2 to represent the new

5. If there is a rule node with a distance to the input vector less than or equal to the max-radius, and its class is the same
as of the input vector’s, enlarge the influence field by taking the distance as a new radius if only such enlarged field
does not cover any other rule nodes which belong to a different class; otherwise, create a new rule node in the same

Recall procedure (classification of a new input vector) in a trained ECF:

1. Enter the new input vector in the ECF trained system. If the new input vector lies within the field of one or more rule
nodes associated with one class, the vector is classified in this class.

2. If the input vector lies within the fields of two or more rule nodes associated with different classes, the vector will
belong to the class corresponding to the closest rule node.

3. If the input vector does not lie within any field, then take m highest activated by the new vector rule nodes, and
calculate the average distances from the vector to the nodes with the same class; the vector will belong to the class

Box 2.

478

J. Comput. Theor. Nanosci. 2, 473-491, 2005


http://www.kedri.info/

Kasabov et al.

Computational Intelligence, Bioinformatics and Computational Biology

A GA algorithm:

GALl. Create a population of N individuals, each individual being represented as a “chromosome” consisting of values (alleles)
of parameters called “genes.”

GA2. Evaluate the fitness of each individual towards a pre-defined objective function. If an individual achieves a desired
fitness score, or alternatively—the time for running the procedure is over, the GA algorithm STOPS.

GA3. Otherwise, select a subset of “best” individuals using a pre-defined selection criteria (e.g. top ranked, roulette-wheel,
keep the best individuals through generations, etc.)

GA4. Crossover the selected individuals using a crossover (“mating”) technique to create a new generation of a population
of individuals.

GAS. Apply mutation using a mutation technique. Go to GA2.

Box 3.

pre-defined objective function (fitness function). A GA
includes the steps shown in Box 3.

GA is a heuristic and non-deterministic algorithm. It can
give a close to optimal solution depending on the time of
execution. For a large number of parameters (“genes in the
chromosome”) it is much faster than an exhaustive search
and much more efficient.

Representing real genes, or other biological variables
(proteins, binding strengths, connection weights, etc.,) as
GA “genes,” is a natural way to solve difficult optimiza-
tion tasks in CB. For this reason GAs are used for several
tasks in this paper and also in the proposed in Section 3
method for feature (genes, this time—real ones) and model
parameter optimization illustrated on a gene expression
classification model.

3. PROBLEMS, METHODS, AND
PERSPECTIVES IN COMPUTATIONAL
BIOLOGY AND BIOINFORMATICS:

A BRIEF OVERVIEW 1.1

3.1. General Overview

A major goal of Computational Biology (CB) and Bioinfor-
matics (BI) is to discover knowledge or enhance knowledge
discovery for biological systems through computation.
Computational approaches provide an underpinning for the
integration of broad disciplines for development of a quan-
titative systems approach to understanding the mechanisms
determining the life of the cell and organism. Another
aspect of the integration of computation and biology is
that biological systems can be viewed as special comput-
ing devices. This view emerges from considerations of
how information is stored in and retrieved from the genes.
Genes can only specify the properties of the proteins they
code for, and any integrative properties of the system
must be “computed” by their interactions. This provides
a framework for analysis by simulation and sets practical
bounds on what can be achieved by reductionist models.
Recent advances in many areas of biology, especially
in genomics, are heavily rooted in engineering technology,
from the capillary electrophoresis units used in large DNA
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sequencing projects, to the photolithography and robotics
technology used in chip manufacture, to the confocal
imaging systems used to read those chips, to the beam and
detector technology driving high-throughput mass spec-
troscopy. Further advances in materials science and nano-
technology promise to improve the sensitivity and cost
of -these- technologies greatly in the near future. Current
research-makes it possible to look at biological phenomena
on a scale not previously possible: all genes in a genome,
all transcripts in a cell, and all metabolic processes in a
tissue.

One core aspect of research in computational biology
focuses on data integration: how to integrate and optimally
query _and analyse data from genomic DNA sequence,
spatial and temporal patterns of mRNA expression, pro-
tein structure, immunological reactivity, clinical outcomes,
publication records, and other sources. A second focus
involves pattern recognition algorithms for such areas as
nucleic acid or protein sequence assembly, sequence align-
ment-for similarity comparisons or phylogeny reconstruc-
tion, motif recognition in linear sequences or higher-order
structure, and common patterns of gene expression and
proteins.-Some of these problems along with possible solu-
tions are discussed in the rest of the paper.

3.2. Computational Genomics

DNA (deoxyribonucleic acid) is a nucleic acid poly-
mer consisting of individual units termed nucleotides.
Each nucleotide consists of one of four distinct nucleo-
sides (deoxypentose sugar plus one of four bases (Ade-
nine (A), Guanine (G), Cytosine (C), and Thymine (T)))
and a phosphate group. Thymine is replaced by Uracil
(U) in RNA (ribonucleic acid). With respect to similar-
ity in structure, nucleosides are divided in two classes:
pyrimidines and purines. Nucleosides A, T, G, and C are
capable of being linked together to form a long chain.
The bases along the polymer can interact with complemen-
tary bases in the other strand: adenine is capable of form-
ing hydrogen bonds with thymine (A:T) and cytosine can
pair with guanine (C:G). A nucleoside is one of the four
DNA bases attached covalently to the sugar. The sugar in
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deoxynucleosides is 2'-deoxyribose and ribose in ribonu-
cleosides. The four different nucleosides of DNA are
deoxyadenosine (dA), deoxyguanosine (dG), deoxycyto-
sine (dC), and deoxythymidine (dT). A nucleotide is a
nucleoside with one or more phosphate groups covalently
attached to the 3'- and/or 5’'-hydroxyl group(s). The DNA
backbone is a polymer with an alternating sugar—phosphate
sequence. DNA is a normally double stranded macro-
molecule with two polynucleotide chains (the double heli-
cal nature of DNA was discovered in 1953.!%). These
chains are noncovalently held together by weak inter-
molecular forces and form a DNA molecule. Two DNA
strands form a helical spiral, winding around a helix axis
in a right-handed spiral with two polynucleotide chains
running in opposite directions. The sugar—phosphate back-
bones wind around the helix axis. The bases of the indi-
vidual nucleotides are on the inside of the helix. For DNA
duplexes, the right handed double helix has 10 pairs per
complete turn. Within the DNA double helix, the ade-
nine:thymine base pair has two hydrogen bonds compared
to three in the guanine:cytosine pair. The two base pairs
are required to be identical in dimensions by, the Watson-
Crick model. High resolution X-ray crystallographic anal-
ysis of the ribodinucleoside monophosphate duplexes (G:C
and A:U) showed that the distance between the glycosidic
carbon atoms in the base pairs are close (10.67 A and
10.48 A, respectively).

RNA molecules are polynucleotides containing ribose
sugars connected by phosphodiester linkages. Although
RNA is generally single-stranded, double-stranded RNA
molecular can be formed where uracil participates in U:A
pair. Single-stranded RNA have a tendency to fold back on
themselves to form double-stranded structures like stacked
double helix for the regions with paired bases and differ-
ent loops (bulge, hairpin, internal, and multibranch) for

unpaired ones. These elements form the RNA secondary'

structure. i

Prediction of RNA secondary structure requires inten-
sive computational resources. Usually RNA resultant struc-
ture corresponds to the local minima of the free energy
and overall free energy of the molecular folded is the sum
of the energies of the stacked base pairs and loops. How-
ever molecular environment and folding pathway, which
can have significant impact on this structure, should be
accounted.

In Structurelab'® dynamic programming algorithm and
a GA were used for determination of the folding of the
RNA molecules. This system allows researchers to pursue
interactively and methodically a multiperspective analy-
sis of RNA structure (multiple and individual). It utilizes
various software modules and hardware complexes.'* Sec-
ondary structure representation of RNA molecular struc-
tures is based on LISP’s nested list notations, for instance
(N(H)(H)(BH)(H)(H)(H)(BBBIH)), where symbols are:
H, hairpin loop, B, bulge loop, I, internal loop, M, multi-
branch loop.
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Other packages that can be used for secondary structure
prediction and presentation are available from the fol-
lowing WWW sites: http://www.bioinfo.rpi.edu/~zukerm/

rna/, http://bioweb.pasteur.fr/seqanal/interfaces/mfold-

simple.html, http://biotools.idtdna.com/mfold/, http://www.

bioinfo . rpi . edu/ applications / mfold / old / rna /form1 . cgi;

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi; http://www.

inra.fr/bia/T/essa/Doc/essa_home.html, http://rrna.uia.ac.

be/card.html.

3.3. Searching for Motifs in Sequences

To find a motif is to find a pattern consensus between a
specified new sequence, and a given existing one. Let us
consider a sequence as a vector of symbols:

X =(x;, X, .0.5%)

where: L, sequence length and all symbols x; belong to a
finite set of symbols (or alphabet):

xeA=A{a,,...,ax}, i=1,...,L

For DNA sequences the alphabet is simply set of four
letters:
A={A,T,G,C}

Searching for functional motif can be considered as a com-
paring two sequences; one is the target sequence (S) and
another one is the motif (M):

S=(8155,-->5,), M=(m,my,....,myp )

having length L and L,,, respectively.
Let now assume that function w;; = w(a;, a;) expresses
weight of combination of two symbols in comparing

sequences. The simplest equation for this function is:
i & 0

1, a; =a;

Wi a) = 0, a;#a
’ i Jj

1
In this case, position j of the motif in target sequence can
be found as a value giving maximum for the following
score:

Ly
(0F :Zw(mnsiﬂ;l)’ J=1 ..., Lg—Ly+1
i=1

Motif can be also represented as a probability (frequency
or weight) p;(a;) to find j-th symbol a; from alphabet
A in position i of the motif. Using the values of matrix
[p:(a;)|| (position weight matrix, PWM), the score value
for each position can be calculated as:

Ly
0= Zpi(si+_/—1)’ J=1...,Lg—Ly+1
i=1

If for i-th position in the motif p;(m;) = 1 and equals 0
for all other symbols this approach is equal to the simplest
case of the weight function. Graphically both methods can
be represented as shown in the Figure 4. The matrix shown
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Fig. 4. Example for a motif search in a sequence.

in this picture is dot plot, i.e., visual representation for
the similarity between two sequences. Each axis repre-
sents one of the two sequences to be compared and each
cell represents weight or probability function values. To
calculate Q; for position j in target sequence one should
summarize values on the diagonal starting from the. cell
(1, j). For the case when weight function has-a simplest
representation (=1 for the equal symbols and O for dif-
ferent ones) and values of this function are represented as
empty and filled cell for O and 1, respectively, the whole
diagonal will represent sequences sharing similarity. For
sequences which share only patches of similarity diagonal
stretches will be shown.

The method of dotmatrix analysis was first described in
Ref. [15]. It can be also useful for finding inverted repeats
and self-complimentary repeats. The use of enhanced dot
plot for nucleic and protein sequences was described in
Ref. [16]. Additional description of the method can be
found in Ref. [17].

A package for detection of patterns and structural
motif in nucleotide sequences (PatSearch) is deseribedin
Ref. [18]. It allows scanning for specific combinations of

. . . i
oligonucleotide consensus sequences with defined" order,

orientation and spacing, and allowing also mismatehes
and mispairing below a user fixed threshold (available
at http://bighost.area.ba.cnr.it/BIG/PatSearch). The possi-
ble pattern units for this package are: string, palindrome,
hairpin loop, position weight matrix, repeat. It uses also
logical patterns as “either/or” and length constraints for
specific combination of pattern units.

The TRANSFAC database (available at http://www.
gene-regulation.com.) on eukaryotic transcriptional regu-
lation, comprising data on transcriptional factors, their
target genes and regulatory binding sites'® and tools for
matrix-based search of transcription factors binding sites
(MATCH). The algorithm of MATCH uses two values to
score hints: the matrix similarity score and the core simi-
larity score which is close to the MatInspector algorithm.

3.4. Sequence Alignment

There are two main type of sequence alignment: pair-
wise (comparing two sequences) and multiple sequence
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alignment (comparing more than two sequences). Multiple
sequence alignment is the procedure of comparing
sequences by searching for the similarity in the subsets
that are in the same order in the sequences. Each subset
can consists of the one or more character of the sequence
and gap(s) between them.

Comparison of two or more sequences has strong bio-
logical rationales. One of them is the fact that gene
sequences may have evolved from common ancestral
sequences and thus the changes in sequence (mutation,
insertion, and deletion) can show us the evolution course
of the particular molecule. Another reason is indicating the
regions of common origin which may in turn coincide with
regions of similar structure or similar function. Results of
alignment can be used as a starting point for solving var-
ious tasks (predicting de novo the secondary structure of
proteins and other knowledge-based structure predictions;
resolving phylogenetic issues; interpreting data from the
human genome).

Let us thave n sequences S,,S,,...,S,, and each
sequence be represented as a vector:

i i i .
SiZ(Sl,Sz,...,SL’_), l=1,...,l’l

where: N, is the length of the i-th sequence, and

for all i and j

s_’}eA:{al,...,aK},

Let now assume that each sequence can be represented
with gaps (insertions/deletion) so:

_ i i i i i i i i
S; = (80> 51> 81> 52> 82>+ - 8L,-1> 5L, gL,)

_wherg: g}, j=0,..., L, are the gaps inserted in the i-th

sequenc'e at j-th place. Alignment of n sequences can
be represented as a matrix R = |[r;;||, with the following
properties:

e r; € AU{gap}, so gap is included in alphabet.

e cach row matrix represents i-th sequence with gaps:
r, =S,

e cach column can not consist only of gaps.

Score function for multiple alignments depends on
the weight function (w;; = w(a;, a;), scoring matrix) and
so-called gap-penalty function. The latter describes the
decrease of score for gaps of given length and consists of
the constant term describing penalty for opening the gap
(a) and penalty for each element in gap (b). The usual for-
mula for penalty of gap having length is (so-called affine

gap penalty):

0(g)=a+bg
and one of its extension:
atb(g—q), >4
0(g) =
a, g=¢q
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where ¢ means that gap penalty for each element will be
added only when gap size is greater than q.

It is obvious that gap penalty function have to be appro-
priate to the weight function to obtain a reasonable align-
ment. If the gap penalty function is high enough with
respect to scoring matrix values final alignment will never
have gaps. On the other hand, too small values of the
gap penalty function will lead to the alignment with gaps
occurring everywhere.

Two alignments can be compared using the same score
function. A key element in evaluating the quality of a
sequence alignment is the score matrix (or substitution
score matrix) w;; = w(a;, a;), which assigns a score for
aligning any possible pair of sequence elements. The the-
ory of amino acid substitution matrices is described in
Ref. [21], and applied to DNA sequence comparison in
Ref. [22].

Basic local alignment search tool (BLAST) for rapid
sequence comparison was developed in 1990.% It directly
approximates alignments that optimize a measure of local
similarity, the maximal segment pair (MSP) score. The
basic algorithm is simple and robust and it, was applied
in straight-forward DNA and protein sequence 'database
searches, motif searches, gene identification searches, and
in the analysis of multiple regions of similarity in long
DNA sequences. A new generation of this algorithm for
searching databases (gapped BLAST and PSI-BLAST) is
described in Ref. [24].

3.5. Computational Proteomics

Proteins are linear polymers of amino acids linked by a
peptide bond. Amino acids are small molecules consisting
of amino group (NH,), a carboxyl group (COOH), hydro-
gen atom attached to the central carbon (a) and s1de chaln

(or R group) attached to the central carbon. There are 20!

standard amino acids, which can be grouped into;classes
based on the chemical properties conferred by their side
chains. Amino acid can be charged (4+/—), hydrophobic/
hydrophilic, polar/nonpolar capable of H-bonding—
allowing for weak interactions. Amino acids can form pep-
tide bonds with each other through reaction of the carboxyl
and amino groups.

Understanding the structures, interactions, and functions
of all of a cell’s or organism’s proteins has been given
a disciplinary title of its own: proteomics. The ultimate
goal of proteomics is to characterize the information flow
through protein networks.

The word proteome, coined in 1994 as a linguistic
equivalent to the concept of genome, indicates proteins
expressed by a genome. This term was coined by Marc
Wilkins and colleagues and appeared for the first time
in 19952 The term proteome is used to describe the
complete set of proteins that is expressed, and modified
following expression, by the entire genome in the life-
time of a cell. It can be used also as a description of
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proteins expressed by a cell at any stage. The generation
of messenger RNA expression profiles is referred to as
transcriptomics, as these are based around the process of
transcription. And the mRNAs transcribed from a cell’s
genome is the transcriptome.

The primary structure of the protein (the liner pro-
tein sequence) determines the ultimate three-dimensional
structure of the protein. The secondary structure repre-
sents the local folding of peptide that results in distinctive
structures shared by many proteins, including alpha («)
helices and beta (8) pleated sheets. These structures were
predicted theoretically prior to the experimental determi-
nation of protein structure and they are the only regular
secondary structural elements present in proteins (there are
also irregular structural elements: loop and coil). Helix is
created by a curving of the polypeptide backbone and sheet
is formed by hydrogen bonds between adjacent polypep-
tide chains rather than within a single chain. There are
two configurations for both elements: rightward/leftward
for helix and parallel/antiparallel for sheet.

The tertiary structure is the global 3D structure of
the polypeptide chain. At this level of structure the side
chains play a major role in creating of the final struc-
ture. Protein folding is a process of forming final three-
dimensional tertiary structure. It is interesting to note that
random polypeptide sequences almost never fold into an
ordered structure, so, protein sequences were selected by
the evolution to achieve reproducible stable structure.?
The quaternary structure represents the interaction of mul-
tiple subunits of a protein. Many proteins are formed from
more than one polypeptide chain, i.e., exist as a nonco-
valent association of two or more identical or different
polypeptides folded independently. The quaternary struc-
ture describes the way in which the different subunits are

' packéd Itogether to form the overall structure of the protein.

Forexample, the human hemoglobin molecule is made of
four subunits.

'Predicting protein structures is one of the tasks in the
computational structural biology. Its main goal is in gen-
eral to predict the structure and the structural basis of
the function of a biologically related molecule. Of all
major classes of biomolecules including proteins, DNA,
RNA, carbohydrates, and small molecules with biologi-
cal activity, protein structures have been mostly studied
computationally because of their importance and variety
of structures known.

Protein secondary structure prediction can be performed
by different packages, among them:

— NNPREDICT (http://www.cmpharm.ucsf.edu/~nomi/
nnpredict.html), that uses a two-layer, feed-forward
ANN (see for details Refs. [27, 28]).

— PHDsec (http://cubic.bioc.columbia.edu/predictprot-
ein) predicts secondary structure from multiple seq-
uence alignments. Secondary structure is predicted by
an ANN rating for the three states helix, strand, and
loop at an expected average accuracy >72%.%7!
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— PROFsec (http://cubic.bioc.columbia.edu/predictprot-
ein)—an improved version of PHDsec (a profile-

based ANN prediction of protein secondary
structure).
— JPRED, http://jura.ebi.ac.uk:8888/, a consensus

method for protein secondary structure prediction.??

Qian and Sejnowski*® investigated the use of multilayer
perceptrons ANN for the task of predicting secondary
structure based on available labeled data. In Ref. [10] an
Evolving Fuzzy Neural Network (EFuNN) is trained on
data from Ref. [33] to predict the shape of an arbitrary new
protein segment: a window of 13 aminoacids was used;
there were 273 inputs and 3 outputs and 18,000 examples
for training. The block diagram of the EFuNN model is
given in Figure 3 (from Ref. [10]).

Prediction of three-dimensional structure of proteins can
be achieved by homology modeling based on the simi-
larity of primary sequences of the protein being analyzed
to a protein of experimentally determined structure (this
method assumes that significant identity between the' two
sequences exists). Algorithms for homology modeling can
be found in the following servers:

— SWISS-MODEL  (http://www.expasy.ch/swissmod/
SWISS-MODEL .html), an Automated Protein Mod-
eling Server running at the GlaxoWellcome Exper-
imental Research in Geneva, Switzerland (see
for details http://www.expasy.ch/swissmod/SWISS-
MODEL.html and Refs. [34, 35]).

— CPHmodels  (http://www.cbs.dtu.dk/services/CPH
models/), Centre for Biological Sequence Analysis;
The Technical University of Denmark; Denmark.
Methods and databases developed to predict protein
structures: Sowhat, neural network based', method

to predict contacts between C-alpha atoms fromI

the amino acid sequence; RedHom, tool ‘to find" a
subset with low sequence similarity in a' database
(see Ref. [36]).

— 3D-JIGSAW Comparative Modeling Server (http:/
www.bmm.icnet.uk/~3djigsaw/); BioMolecular Mod-
eling Group; Imperial Cancer Research Fund;
London, UK. Automated system to build three-
dimensional models for proteins based on homo-
logues of known structure (Refs. [37-39]).

— SDSC1-SDSC Structure Homology Modeling Server
(http://cl.sdsc.edu/hm.html) and Databases and Tools
for 3-D Protein Structure Comparison and Alignment
(http://cl.sdsc.edu/ce.html); San Diego Supercomput-
ing Centre; San Diego, CA, USA (Refs. [40, 41]).

Detailed review of the Bioinformatic tools for proteome
profiling can be found in Refs. [42-44].

Development of software for 2-D gel protein image
analysis began about 35 years ago®* with further
improvement that were made in the late 1980s.%35? There
are many commercially available packages now, among
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them: DeCyder 2D Analysis, ImageMaster 2D Elite,
http://www1.amershambiosciences.com/; Delta2D, www.

decodon.com; GELLAB I1+4, www.scanalytics.com, http://

www-lecb.ncifcrf.gov/lemkin/gellab.html; GeneData Imp-
ressionist system, www.genedata.com; ImageplQ, www.
proteomesystems.com; Melanie 3, www.genebio.com;
ProteinMine, www.scimagix.com; TotalLab, www.totallab.
com. Some of the 2-D gel image analysis packages can
interact with automatic robotic systems.

Comparative (homology) modeling is a computational
biology method that can provide protein structure pre-
diction with a root-mean-square (rms) error lower than
2 A. Computational methods for protein structure predic-
tion based on related proteins of known structures have
been developed more than three decades ago.>® Later Greer
outlined a basic protocol that is still followed today.>*3
Most homology modeling methods consist of four sequen-
tial steps.’® The first step is to identify the proteins with
known 3D structures that are related to the target sequence.
The second step-is to align them with the target sequence
and to pick those known structures that will be used as
templates. Any corrections in the alignment are made at
this stage. The third step is to build the model for the target
sequence given its alignment with the template structures.
In the fourth step, the model is evaluated using a variety
of criteria. If necessary, the alignment and model build-
ing are repeated until a satisfactory model is obtained. The
main difference between the different comparative mod-
eling methods is how the 3D model is calculated from
a given alignment. Because of the importance of step 3
sometimes it is divided into four stages:’’ backbone gen-
eration, loop modeling, side-chain modeling, and model
optimization.

3.6._ Computational Cell Biology

Computational cell biology is an emerging discipline that
responds to the need for computational methods to analyze
and organize the abundance of experimental data on the
structure and function of the cell. Historically (Ref. [58]),
mathematical biology has had a limited success turning
in time into somewhat abstract discipline. Several exam-
ples of early success of mathematical modeling in biology
was demonstrated in the following works: Lotka-Volterra
predator-prey model in ecology,®® Hodgkin-Huxley’s
model of nerve conduction,®’ Manfred Eigen’s theory of
molecular evolution,”? Gierer-Meinhardt’s theory of bio-
logical pattern formation.®* Extensions of these models
were considered later by many biologists as a mathemat-
ical refinement with limited practical utility (with some
exceptions for the mathematical models in neurobiology
and cardiology). Biological systems are complex and open,
various factors can change the behavior of the system, so
even simple computational modeling requires the continu-
ous interaction between model building and experimental
verification.
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Complexity of biological objects can be defined as
“large number of functionally diverse, and frequently mul-
tifunctional, sets of elements which interact selectively
and nonlinearly to produce coherent rather then complex
behavior.”®* Biological events occurring at various levels
(such as organism, tissue, cell, and molecular) and com-
plexity of the system being modeled, lead to the need for
integration of different models. For instance, for modeling
transduction of activation signal into cell one may need to
include gene regulatory network, models of proteins path-
ways, models of membrane and diffusion of molecules and
ions into cell, etc. Some of these models may be available
for the investigator but they are most likely different in
format, programming languages and computing platforms,
so one may need to develop the tools unification of the
models and of communication between them. Currently,
there are two ongoing projects for introducing standards in
the model communication: System Biology Markup Lan-
guage (www.cds.caltech.edu/erato/sbml/docs) and CellML
(www.cellml.org).

Next challenge related to modeling complex| biologi-
cal systems is modeling adaptation, i.e., how a1model
should change with respect to new experimental data. For
a model consisting of hundreds of equations and param-
eters adaptation to new experimental data is not trivial at
all. A possible way to solve this problem is to identify the
semi-autonomous functional units in the model with known
parameters and system behavior. So, building a complex
model or estimating model parameters can be accomplished
in a step-wise or modular based manner. The issue of model
adaptation and parameter and feature optimization with the
use of GA is illustrated in the next sub-section.

R
3.7. Microarray Gene Expression Data Analysis and
Disease Profiling

The recent advent of cDNA microarray and gene-chip tech-
nologies means that it is now possible to simultaneously
interrogate thousands of genes. The potential applications
of this technology are numerous and include identifying
markers for classification, diagnosis, disease outcome pre-
diction, therapeutic responsiveness, and target identifica-
tion. Microarray analysis might not identify unique markers
(e.g., a single gene) of clinical utility for a disease because
of the heterogeneity of the disease, but a prediction of the
biological state of disease is likely to be more sensitive by
identifying clusters of gene expression (profiles).5

Each point (pixel, cell) in a microarray matrix represents
the level of expression of a single gene. Five principal
steps in the microarray technology are shown in Figure 5.
They are: tissue collection; RNA extraction; microarray
gene expression evaluation; scanning and image process-
ing; data analysis.

One of the contemporary directions while searching for
efficient drugs for many terminal illnesses, such as cancer
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Fig. 5. The pathway of the microarray technology.

or HIV, is the creation of gene profiles of these diseases
and subsequently finding targets for treatment through
gene expression regulation. A gene profile is a pattern of
expression of a number of genes that is typical for all, or
for some of the known samples of a particular disease. An
example of a disease profile is shown in Box 1.

Having such profiles for a particular disease makes it
possible to set an early diagnostic test, so a sample can
be taken from a patient, the data related to the sample
processed, and a profile related to the sample—obtained.
This profile can be matched against existing gene profiles.
Based on similarity, it can be predicted with certain prob-
ability if the patient is in an early phase of a disease or
he/she is-at risk of developing the disease in the future
with certain probability.

ANN have been used to create classification systems
based on gene expression data. In Ref. [66] a multilayer
perceptron ANN was used to achieve a classification of
93% of Ewings sarcomas, 96% of rhabdomyosarcomas,
and 100% of neuroblastomas. From within a set of 6567
genes, 96 genes were used as variables in the classifica-
tion system. Whether these results would be different using
different classification methods needs further exploration.

3.7.1. Feature and Model Optimization for Gene

]
Expression Data

An usual way of processing gene (and also protein) expres-
sion ‘data S of genes G consists of the following steps:

(1) FOR i:=1 to N (in particular, it could be leave-
one-out method, where N is the number of available
samples) DO

(a) select a sub-set Sv, i from S of data for validation;

(b) for the rest of the data St, i select the most
discriminative subset of genes Gi; Card(Gi) <«
Card(G);

(c) create a model Mi based on the data St, i, and
the gene set Gi as input variables;

(d) validate Mi on the test set Sv, I and calculate the
error Ei.

END (FOR)

(2) Calculate the average error from Ei.

(3) Define a set Gm of the most frequently selected genes
in all N iterations.

(3) Create a final model M based on the whole data S
and the set of genes Gm.
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(2) FOR J =1 to P generations DO

(b) Train all K models on Str and test them on Stst.

models.

END (FOR)

values.

GA optimisation of a gene set and model parameters (see a general description of GA in Box 3)

(1) Starting with an initial gene set Gm and a model M, create a population of K chromosomes (models), each having
different gene subsets from Gm and slightly different parameter values from the parameter values of the model M. The
chromosome contains a binary part, where a gene is present (1) or not present (0) in a model, and a part of continuous
values—the parameters of the model. If, for example, the model is ECF (see Box 2), the parameters are: Rmax, Rmin,
Number of fuzzy membership functions, Number of iterations of training the ECF model.

(a) Select randomly from the data set S a subset Stst for testing and the rest Str for training.

(c) Select (see Box 3) the best models (e.g., maximum accuracy).
(d) Apply cross validation and mutation (see Box 3) to the chromosomes to create the next generation of K new

(3) Select the best model (the model with the best accuracy) that has an optimized gene set and optimized model parameter

Box 4.

After the above steps, a model M is created using-the
most frequently appearing genes in all N iterations—a
gene set Gm. The gene set Gm though may not be- opti-
mal in terms of representing a minimum set of genes that
through their interaction “cover” all clusters of the problem
space. The parameters of the model M derived above were
not optimized and may not be optimal either. Box 4 rep-
resents a GA optimization algorithm for the optimization
of both the gene set and the model parameter values as an
additional procedure to the procedure above.

Example is given in Figure 6a (as a screen dump of the
procedure used in the software environment SIFTWARE).
A well known DLBCL cancer outcome prognosis data set
is used (Shipp et al., 2002). As a starting point for the gene
set optimization, the set of 11 genes selected as the most

frequent in this publication, are used for the ECF classi- '

fication model with default parameter values (see'Box2).
The cross validation accuracy obtained was 88%. When
the algorithm from Box 4 is applied, the accuracy after 5
fold cross validation is 91% and the selected optimal vari-
ables are: 1, 2, 3, 4, 5, 7, 9, 10, 11, where variable 1 is
the IPI clinical prognostic index and the rest of the vari-
ables from 2 to 12 correspond to the genes from 1 to 11
in (Shipp et al., 2002). The procedure in Box 4 results in
a better accuracy model and in a smaller gene set (eight)
that any of the published results. This case study also illus-
trates one of the problems of integrating different sources
of information, in this case—gene and clinical variables,
in an optimized model.

Using the best ECF model evolved as shown in
Figure 6a, a set of fuzzy rules can be extracted from it,
each representing a cluster of data and interpreted as a pro-
file of the cluster for the respective class. This is shown in
Figure 6b, where for class 1 (good outcome) the clusters
are 12 and for class 2 (fatal outcome) the clusters are 11.
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Red color represents a high value of a variable and green
color represents a low value.

3.8. Computational Systems Biology

The aim of computational systems biology is to under-
stand complex biological objects in their entirety, i.e.,
at a system level. It involves the integration of different
approaches and tools: computer modeling, large-scale data
analysis, and biological experimentation. One of the major
challenges of the systems biology is the identification of
the logic and dynamics of gene-regulatory and biochem-
ical networks. The most feasible application of systems

blology is to create a detailed model of a cell regulation to

prov1de system-level insights into mechanism-based drug
discovery.5-%

System level understanding is a recurrent theme in biol-
ogy and has a long history.”"7> The term “system-level
understanding” was described in Ref. [73] as the shift of
focus in understanding a system’s structure and dynamics
in whole rather than the particular objects and their inter-
actions. System-level understanding of a biological system
can be derived from insight into four key properties:**

System structures—these include the gene regulatory
network (GRN) and biochemical pathways. They can also
include the mechanisms of modulation the physical prop-
erties of intracellular and multicellular structures by inter-
actions.

System dynamics. System behavior over time under
various conditions can be understood by identifying
essential mechanisms underlying specific behaviors and
through various approaches depending on the systems
nature: metabolic analysis (finding a basis of elemen-
tary flux modes that describe the dominant reaction path-
ways within the network), sensitivity analysis (the study
of how the variation in the output of a model can be
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Fig. 6. Gene set and model parameter optimization for the DLBCL cancer outcome prognosis data with use of SIFTWARE (www.peblnz.com): (a) the
screen dump of the results from the optimisation procedure: (b) a fuzzy rule (a profile) for each cluster of the DLBCL cancer outcome prognosis data
is derived from a trained ECF (see Box 2) using the optimized parameter values and inputs for the two classes—class 1 (a good outcome) and class 2
(a fatal outcome).
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apportioned, qualitatively or quantitatively, to different
sources of variation), dynamic analysis methods such as
phase portrait (geometry of the trajectories of the system
in state space) and bifurcation analysis (bifurcation analy-
sis traces time-varying change(s) in the state of the system
in a multidimensional space where each dimension repre-
sents a particular system parameter (concentration of the
biochemical factor involved, rate of reactions/interactions,
etc.). As parameters varied, changes may occur in the
qualitative structure of the solutions for certain param-
eter values. These changes are called bifurcations and the
parameter values are called bifurcation values).

The control method. Mechanisms that systematically
control the state of the cell can be modulated to change
system behavior and optimize potential therapeutic effect
targets of the treatment.

The design method. Strategies to modify and con-
struct biological systems having desired properties can be
devised based on definite design principles and simula-
tions, instead of blind trial-and-error.

As it was mentioned above, in reality analysis of system
dynamics and understanding the system structure are over-
lapping processes. In some cases analysis of the system
dynamics can give useful predictions in system structure
(new interactions, additional member of system). Different
methods can be used to study the dynamical properties of
the system:

e analysis of steady-states allows to find the systems
states when there are no dynamical changes in system
components.

e stability and sensitivity analyses provide insights into
how systems behavior changes when stimuli and rate con-
stants are modified to reflect dynamic behavior. . 4 4 4

e bifurcation analysis, in which a dynamic simulator is

coupled with analysis tools, can provide a detailed illus- |

tration of dynamic behavior.”* 7

e flux balance analysis’® can be used to predict the dif-
ferent metabolic patterns as it was done, for instance, in
Ref. [77] for predicting the switching in of the metabolic
pathways in Escherichia coli under different nutritional
conditions based on knowledge of only the metabolic net-
work structure.

The choice of the analytical methods depends on avail-
ability of the data that can be incorporated into the model
and the nature of the model.

It is important to know the main properties of the com-
plex system under investigation, such as robustness.

Robustness is a central issue in all complex systems
and it is very essential for understanding of the biologi-
cal object functioning at the system level. Robust behavior
in biochemical networks has been reported long time ago
in Refs. [78, 79] as well as in more recent papers.’83
Robustness can be defined as the preservation of partic-
ular characteristics despite uncertainty in components or
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the environment.®* Robust systems exhibit the following
phenomenological properties:*

e adaptation, which denotes the ability to cope with
environmental changes;

e parameter insensitivity, which indicates a system’s
relative insensitivity (to a certain extent) to specific kinetic
parameters;

e graceful degradation, which reflects the characteristic
slow degradation of a system’s functions after damage,
rather than catastrophic failure.

All the above features are present in many of the CI
methods and techniques and make them very suitable to
modeling complex biological systems.

The main feature of the evolutionary biology, the con-
verged evolution, is that it leads to nearly optimal systems
with similar gross characteristics, so simple arguments
based on optimal design can explain functional relations
between variables across many scales.?>% Three other key
elements (discovered with the use of computational mod-
eling and experimentation) of the organizational principles
used by cells are noted in Refs. [87-89]:

e Ultrasensivity, a response that is more sensitive to
ligand concentration as compared to standard responses
defined by the Michaelis-Menten equations;’*?

e Multistability, an existence of 2 or more stable state
for the regulating network®® %

e Rhythmic behavior, functioning as a systemic oscil-
lator. In Ref. [95] the gene regulatory network with this
property was described: three transcriptional repressors

were used to build oscillating network in Escherichia coli.

More general principles which seem to be necessary for

,the operation of a living system (and peculiar to the com-

plex biological systems) were presented in Ref. [96]:

e Program, plan describing ingredients and interactions
between'them as living system persist through time.

e Improvisation, the ability to change the program with
respect to changes in environment.

e Compartmentalization, division of the organisms on
smaller compartments in order to centralize and specialize
certain functions.

e Energy, living organism is open system metabolizing
energy.

e Regeneration, resynthesis of the constituents of the
system.

e Adaptability, fast response that allow survival in
quickly changing environments.

e Seclusion, the ability to allow thousands of reactions
to occur with the high efficiency in the tiny volume of
living cells.

Revealing all these characteristics of a complex living sys-
tem helps choosing an appropriate method for their model-
ing, and also constitutes an inspiration for the development
of new CI methods that posses these features.
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Fig. 7. A simple gene regulatory network (GRN) representing only
4 genes (the nodes) and their relative interaction strength—the arcs. Func-
tions are used to calculate the activity of each gene depending on the
activity of other genes in the network, which functions are not shown.

Modeling living cells in silico (in a computer) has many
implications, one of them is testing new drugs/ through
simulation rather than on patients. According to Ref. [97]
human trials fail for 70-75% of the drugs that-enter them:

Modeling gene regulatory networks (GRN) is the task of
creating a dynamic interaction network between genes that
defines the next time expression of genes based on their
previous levels of expression. A simple GRN of 4 genes
is shown in Figure 7.

A detailed discussion of the methods for GRN mod=
eling can be found in Refs. [89, 98-104]. Models of
GRN, derived from gene expression RNA data, have
been developed with the use of different mathematical
and computational methods, such as: statistical corre-
lation techniques;'®'% evolutionary computation;'®’- 108
ANN;!9- 119 differential equations, both ordinary,! and

partial;''" Boolean models (example is given in- Fig. 8);,

kinetic models (example is given in Fig. 9); State-based
models (see Section 2) and others.!>!12 In Ref. [113]'a
simple GRN model of 5 genes is derived from time course
gene expression data of leukemia cell lines U937 treated
with retinoic acid with two phenotype states—positive and
negative. The model uses ECOS.°

Despite of the variety of different methods used so far
for modeling GRN and for systems biology in general,
there is no a single method that will suit all requirements
to model a complex biological system, especially to meet

00— 01

—
_
10 11

Fig. 8. Diagram representation of a Boolean network for a set of two
genes.
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00 > 01 > 02
10 11 2 D
20 > 21 »22

Fig. 9. Diagram representation of a kinetic logic model for a set of two
genes and three states of gene expressions. The system has two stable
states (“12,” “227).

the requirements for adaptation, robustness, information
integration. Novel methods of CI are needed, that include
methods for model integration.

4. DISCUSSIONS: IMPLICATIONS FOR
MEDICINE AND NANOTECHNOLOGY

The results obtained through the application of the CB and
BI methods to biological problems, including the methods
of CI, have a tremendous impact on the development of
new drugs and treatments in Medicine on the one hand,
and on the development of new computational methods
and techniques on the other hand.

Profiling gene and protein expression using DNA and
protein arrays has a tremendous impact in molecular-based
classifications of diseases. There are two important tasks
among others in this area: finding the correlation between
subsets of genes/proteins and disease features (progres-

 sion, lqcalization, etc.); identifying the smallest informa-

tive ‘set' of genes/proteins associated with specific disease
fdatures (see Fig. 6).

i {The. microarray technology offers an opportunity to
screen thousands of genes simultaneously to be monitored
in parallel. New disease subtypes or molecular distinct
forms of the disease can be identified with the use of this
technology: B-cell lymphoma,''* two molecularly distinct
forms of diffuse large B-cell lymphoma with gene expres-
sion patterns indicative of different stages of B-cell dif-
ferentiation; breast tumors,!!> !¢ gene expression patterns
provided a distinctive molecular portrait of each tumor in
a set of 65 surgical specimens of human breast tumors
from 42 different individuals; human acute leukemia,!'’
automatic discovery the distinction between acute myeloid
leukemia and acute lymphoblastic leukemia. In Ref. [118]
cDNA microarray technology was used to explore variation
in gene expression in 60 cell lines of human cancer and
consistent relationship between the gene expression pat-
terns and the tissue of origin was found. Specific features
of these gene expression patterns appeared to be related
top physiological properties of the cell lines (doubling time
in culture, drug metabolism, interferon response).
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For some cases DNA microarray technology is inade-
quate method for studying, as it was noted in Ref. [119]
for autoimmune diseases:

e disease may not manifest at the RNA level, but rather
at protein one;

e protein function can be regulated by posttranslational
modifications.

e nonpredictive correlations between RNA expression
and protein expression and function.

The correlation between levels of mRNA measured in
oligonucleotide microarrays and protein is important issue
in DNA microarray technology. The lack of this correla-
tion means that predictive property of the gene expression
is independent of gene function. There is no strict linear
relationship between genes and the ‘proteome’ of a cell.
Proteomics is complementary to genomics because it
focuses on the gene products and for this reason proteo-
mics directly contributes to drug development as almost
all drugs are directed against proteins.

Proteomics is a promising approach to the: identification
of new diagnostic tools (identification of disease markers
or proteins that appear or disappear during the ccourse of‘a
disease), development of drugs, improvement of efficiency
of clinical trials (availability of biologically relevant mark-
ers for drug efficacy and safety); clinical diagnostic testing.

These approaches include: the analysis of protein exp-
ression in normal and disease tissue, analysis of secreted
proteins in cell lines and primary cultures, direct serum
protein profiling. Aberrantly expressed proteins might rep-
resent new markers. Mass spectrometry allows yielding
comprehensive profiles of peptides and proteins without
the need of first separate them and it is highly suited for
marker identification.

The changes in protein expression that enable tumorjto
initiate and progress in the local tissue microenyironment
were analyzed in with the use of antibody microarray. It
was demonstrated that quantitative, and potentially qualita-
tive, differences in expression patterns of multiple proteins
within epithelial cells reproducibly correlate with tumor
progression.

A reverse-phase protein array approach with immobi-
lization of tissue’s proteins has been reported in Ref. [120].
These arrays were used for screening of molecular markers
and pathway targets in patient matched human tissue dur-
ing disease progression. In contrast to previous protein arr-
ays that immobilize the probe, reverse phase protein arrays
immobilize the whole repertoire of patient proteins that
represent the state of individual tissue cell populations
undergoing disease transitions. A high degree of sensitiv-
ity, precision and linearity was achieved, making it possi-
ble to quantify the phosphorylated status of signal proteins
in human tissue cell subpopulations.
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